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An n-convex function is one whose nth order divided differences are nonnegative.
Thus a I-convex function is nondecreasing and a 2-convex function is convex in the
classical sense. A function f is n-concave if -f is n-convex. We consider best
uniform approximation by n-convex and n-concave functions and, by considering
alternation properties of the error function, we prove a variety of results, including
characterizations of functions with best n-convex or n-concave approximations in
IIn -I> a sufficient condition for best n-convex approximation, and a uniqueness
result. Several examples are given. © 1989 Academic Press, Inc.

INTRODUCTION

A real-valued function / is called n-convex if its nth order divided
differences [xo, ..., x n ]/ are nonnegative for all X o< ... < Xn- Thus a
I-convex function is nondecreasing and a 2-convex function is convex in
the usual sense. An n-convex function / need not be n-times differentiable,
however if/(n) exists then/is n-convex iff/(n) ~ O. A function/is n-concave
if - / is n-convex. The study of n-convex functions was initiated by Hopf in
his dissertation [3] in 1926, and they were the subject of a monograph by
Popoviciu [10] in 1944. The book [11] by Roberts and Varberg also
contains an introduction to n-convex functions, as well as to other forms of
generalized convexity.

The subject of n-convexity may be viewed from the broader perspective
of WT-spaces and generalized convexity, a subject that has been intensively
studied by Karlin and Studdden [4] and others, including the author
[13-16]. Many of the properties of n-convex functions are shared by a
larger class of generalized convex functions and, indeed, can be
demonstrated by appealing to this general theory.

In this paper we will assume no such knowledge, however we note that,
in the terminology of those papers, a function / is n-convex if it is
generalized convex with respect to the T-system {I, x, ..., x n

-
1

}, so that
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either f is a polynomial of degree at most n - 1 or else {1, x, ... , x n
- 1, f} is

a WT-system.
This paper deals with best uniform approximation of continuous

functions from the convex cone of n-convex functions. A convex function g
will be called a best n-convex approximation to f if

sup If(x) - g(x)1 = inf{sup If(x) - g(x)l: g is n-convex}.

There has been since the mid-sixties continued interest in so-called shape
preserving approximations-approximations that preserve properties of
monotonicity or convexity, or that satisfy certain restrictive derivative
conditions (see, e.g., [6,7, 12J). We believe that this subject can be treated
fruitfully in the more general framework of n-convex approximation, and
this paper is a start in that direction.

For the most part, the results of this paper deal with qualitative aspects
of best n-convex approximation, and existence is not considered. The
interested reader is referred to [17J, where it is proved that every
continuous function has a continuous best n-convex approximation.

1

We will use the following conventions and notation throughout this
paper:

(1) All functions are assumed to he in C[a, b], i.e., continuous on
the compact interval [a, b J, unless otherwise noted.

(2) lifll denotes the uniform norm of f, i.e., ilfll=:;mp{lf(x)l:
x E [a, b J}.

(3) The term "best approximation" will always connote "best
uniform approximation," unless otherwise stated. Thus g is a best n-convex
approximation' (hna) to f if

Ilf - gil = inf{ Ilf - gil: g is n-convex on [a, b]}.

(4) n k denotes the linear space of polynomials of degree at most k.

(5) For a given (continuous) function, Pn-l denotes its unique best
approximation from JIn-1 and Pn is its best approximation from nn' The
leading coefficient of Pn is denoted by all'

(1) DEFINITION. An alternant of length k for a function f is a set of
points a ~ Xl < ... < x k ~ b such that

(i = 1, ..., k - 1)

640/56/1·3
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If(xJI = Ilfll (i= 1, ..., k).

Iff(xk) > 0 we call it a positive alternant, otherwise it is a negative alternant.

We recall [1] that p n _ 1 E IIn _ 1 is a best uniform approximation of
f E C[a, b] iff f - Pn-I has an alternant of length at least n + 1. Best
polynomial approximations are unique.

In the following lemma, and henceforth, a zero of multiplicity two for a
function f on [a, b] is a zero in (a, b) at which f does not change sign.
Lemma (2) is a compilation (see [10,11,13]) of various results about
n-convex functions.

(2) LEMMA. If g is n-convex on [a, b] then

(a) g has at most n sign changes in (a, b),

(b) g has at most n isolated zeros (counting multiplicity up to two),

(c) if g has more than n zeros (counting multiplicity up to two) then g
vanishes on a subinterval of [a, b] and isnonzero elsewhere in [a, b],

(d) [xo, ...,xn]g=Ofor some x o < ... <xn iffgEIIn- 1 on [XO,xn],
and

(e) g(n-2) is continuous and convex in (a, b).

(3) DEFINITION. An oscillation of length k for a function f is a set of
points x l < .. · <xk such that e(-1)i(f(xi+d-f(xJ»O (i=1, ...,k-1)
for e = ±1. If f( X k) - f( X k _ 1 ) > 0 we call it a positive oscillation, otherwise
it is a negative oscillation.

The following lemma is fundamental to the further results of this paper.

(4) LEMMA. No n-convex function has a negative oscillation of length

n+ 1.

Proof For n = 1 and n = 2 this is obvious, so assume n ~ 3. In this case,
if g is n-convex then g is differentiable in (a, b) and g' is (n - 1)-convex in
(a, b). Suppose that g has a negative oscillation a:::;; XI < .. , <xn + 1 :::;;b,
i.e., (_l)n- i(g(Xi+ I) - g(xJ) < 0 (i = 1, ..., n). By the mean value theorem
there are points Xi < Yi < x i+1 such that ( _l)n-lg'(yJ < 0 (i = 1, ..., n). But
then

[ ] ' ~ g' ( y;) 0
YI'''' Yn g = 1... n ( _ )<

i~1 J#i Yi YJ
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since sgnTIJ~l,j#i(Yi-Yj)=(-lt-i. This contradicts the (n-l)­
convexity of g' in (a, b). I

The following theorem follows directly from (4) and the statement about
sign changes in (2).

(5) THEOREM. f is n-convex ifffor every p E 111l_ 1, f - p has no negative
oscillation of length n + 1.

(6) DEFINITION. For fE[a,b) we define crit(f)={xE[a,b]:

I/(x)[ = Ilfll}·

(7) LEMMA. If g is bna to f then f - g has an alternant 01 length at least
n + 1.

Proof If f - g has at most n alternation points then we could define
a polynomial p E Illl - 1 such that sgn p(x) = sgn(f(x) - g(x)) for
x E crit(f - g). Then, for small enough y > 0, f - g - yp would have smaller
norm than 1 - g and thus g + yp would be a better n-convex
approximation to f I

(8) LEMMA. There is a negative alternant of length n + 1 common to all
f - g where g is a bna to f

Proof We first prove that the assertion in (8) is valid for a countable
collection of bna's. Let {gi};~ 1 be a bna's to f, set E(f) := Ilf - gill, and
for fJi>O U=1,2, ... ) such that I,::lfJi=l define g:=I,::lfJigi' Since
II gill - Ilfll ~ Ilf - gill = E(f), the sequence {II gill} is uniformly bounded;
hence g is the uniform limit of continuous, n-convex functions and thus is
continuous and n-convex. Moreover, g is a bna to 1 since

We now show that

(9)
CD

crit(f - g) c n crit(f - gJ,
i=l

from which the assertion for countable collections will follow by applying
(7) to f - g. Suppose that x E crit(f - g) with I(x) - g(x) = +E(I). Then

E(f) = I(x) - g(x) = L fJJf(x) - g;(x)) ~L fJiE(f) = E(f);
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hence equality prevails, which is possible only if f(x) - gi(X) = E(f)
(i = 1, 2, ... ), i.e.,

(10) XE ncrit(f - gJ

Similarly, iff(x)-g(x)= -E(f), thenf(x)-gi(x)= -E(f) (i=I,2, ... ),
so that (10) holds in this case a well. This proves the validity of (9).

Now let {ga} be the collection of all bna's to f and define
Ca= crit(f - ga)' The sets Ca are compact and nonempty. Let C= na Ca;
then C is closed, and hence

ce = ( 0Ca)e= yc~

is an open covering of ce. By Lindel6fs theorem this can be reduced to a
countable subcovering: CC=Ur:l C~i' and thus C=nr:l Cai . As we have
shown above, this intersection contains a common negative alternant of
length n + 1, and therefore the lemma is proved. I

The following is a sort of "de la Vallee Poussin" theorem for n-convex
functions (cf. [1]).

(11) THEOREM. Suppose that, for some n-concave function h, f - h has a
negative oscillation of length n + 1: XI < ... < X n+ 1, f( xj ) - h(Xj )=
( -1 t -jej' ej > 0 (j = 1, ..., n + 1). Then, for every n-convex function g,
Ilf - gil> minj ej .

Proof Otherwise, for some n-convex function g, Ilf - gil < min ej ;
hence Ilf - gil < Ilf - hll and g- h = (f - h) - (f - g) has a negative
oscillation of length n + 1, a contradiction since g - h is n-convex. I

(12) COROLLARY. If for some n-concave function h, f - h has a negative
alternant of length n + 1, then, for every n-convex function g,

Ilf - gil ~ Ilf -hll·

2

We now prove our first main theorem.

(13) THEOREM. For f E C[a, b], the following are equivalent:

(a ) Pn_ 1 is a bna,

(b) Pn is n-concave (an ~ 0), and

(c) f - Pn -1 has a negative alternant of length n + 1.
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Proof (a) ~ (b). We observe that if an # 0 then by the umqueness
of Pn

(14) ilf - Pnll < Ilf - Pn-lll·

If Pn is not n-concave, i.e., an>O, then (14) holds and Pn is a better
n-convex approximation than Pn - I'

(b)~ (c). If an =0 then Pn-I = Pn; thusf- Pn-l has an alternant of
length n+ 2 and hence it also has a negative alternant of length n + 1. If
an<O then (14) holds; hence Pn-Pn-I=(f-Pn-I)-(f-Pn) has an
oscillation of length n + 1 at the alternation points of f - Pn _ l' with the
same orientation. Since Pn - Pn _ 1 is n-concave, by (4) the oscillation (and
hence also the alternant) must be negatively oriented.

(c) ~ (a). This foHows from (12) by setting h := Pn -1' I

(15) COROLLARY. Every continuous function has either a best n-convex
approximation in IIn_ 1 or a best n-concave approximation in IIn- 1 .

(16) COROLLARY. Let g be any bna to f E C[a, b]. If an < 0 then

(a) Ilf-gil= Ilf-Pn-III,

(b) f - g has a negative alternant of length n + 1,

(c) f - g has no positive alternant of length n + 1,

(d) f - g has no alternant of length n + 2.

Proof As shown in (15), an<O implies that Ilf-gll=llf-Pn-J>
Ilf - Pnll· Now the n-concave function Pn - g = (f - g) - (f - Pn) oscillates
where f - g alternates; hence f - g can have no positive alternant oflength
n + 1 (and thus no alternant of length n + 2). However, by (7) f - g has at
least one alternant of length n + 1, which must therefore be negatively
oriented. I

(17) THEOREM. For f E C[a, b], the following are equivalent:

(a) Pn-I is both a best n-convex approximation and a best n-concave
approximation to f,

(b) Pn-I=Pn (an=O),

(c) f - Pn _ 1 has an alternant of length n + 2,

(d) for some n-concave function h, f - h has a negative allernant of
length n + 1, and for some n-convex function g, f - g has a positive alternant
of length n + 1, and

(e) Ilf - gil = Ilf -hll for some best n-convex approximation g and
some best n-concave approximation h to f
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Proof The equivalence of (a) and (b) follows directly from (13) and the
analogous statement for n-concave approximation, as does that of (a) and
(c). Now (c) = (d) by setting g:= h = Pn-I and (d) = (e) by applying (12)
and its n-concave analog. Finally, (e)=(a) since by (15) Ilf-gll=
Ilf - Pn-III or Ilf -hll = Ilf - Pn-III, so that all are equal. I

(18) THEOREM. Let f E C[ - a, a]. Iff is an even function and n is odd or
iff is an oddfunction and n is even then f has both a best n-convex and a best
n-concave approximation in lIn -I'

Proof Suppose that f is even on [ - a, a]. Then Pn is even as well since
!(Pn(x) +Pn( -x)) is also a best approximation to f(x) = !(f(x) + f( -x)),
and hence by uniqueness it equals Pn(x). If n is odd it follows that
PnEIln_I' i.e., Pn=Pn-l, and we may use (17). We proceed in a similar
fashion iff is odd and n is even. I

(19) EXAMPLE. Letf(x) = Ixl on [-1,1]. Sincefis an even function
its best approximation from Il3 is also even and hence is in Il2 • Now the
best quadratic approximation to x on [0, 1] is gotten by considering the
Chebyshev polynomial T 2 (x) = 2x2

- 1 on [ -1, 1] transformed for [0, 1] :

YE[O,I].

Since T2 ( y) deviates least from zero on [0, 1] along all polynomials
normalized in this way [8], it follows that P2(X) = x 2+k is the best
quadratic approximation to x on [0, 1], and hence, being even, is also best
for [-1,1]. By (17), P2 is a best 3-convex (and also a best 3-concave)
approximation to Ixl on [ -1, 1].

(20) THEOREM. IfPn-I is a bna to f then every bna to f agrees with Pn-I
on an interval containing n + 1 alternation points off - Pn -I'

Proof Applying (10) with gl = Pn-I' we see that any other bna to g
must agree with Pn-I on an alternant of length n+ 1. Thus g- Pn-I­
(f - g) has at least n + 1 zeros, which by (2) implies that g =. Pn _Ion a
subinterval of [a, b] and g # Pn -I elsewhere. Therefore g =. Pn _ 1 on a
subinterval containing n + 1 alternation points off - Pn -I' I

The next theorem promises to be particularly useful in developing an
algorithm for computing bna's

(21) THEOREM. Let g be n-convex and suppose that f - g has a negative
alternant Xo < '" < Xn such that [xo, ..., xnJ g = O. Then g is a bna to f, and
every other bna coincides with g on a subinterval of [Xo, xnJ containing n + 1
alternation points off - g.
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Proof We note first that by (2) [xo, ..., x n ] g = 0 iff gl [xo,xn] E 11n -1' if
gl were n-convex with Ilf - glll < Ilf - gil, then gl - g = (f - g) - (f - gl)
would have a negative oscillation at x o, ..., x n , a contradiction as g1 - g is
n-convex on [xo, xnJ. This shows that g is a bna. It also shows that g is
best on the interval [xo, x n ]; hence we may apply (20) to complete the
theorem. I

(22) EXAMPLE. Let

f(x)=x+l,

=0,

=x-l,

XE [-2, -1)

xE[-l,l]

xE(l,2],

i.e.,f(x) = x + 1 - (x + 1) + + (x - 1) +' where x + = x if x ~ 0 and x + = 0 if
x < 0. We seek a best 3-convex approximation to f on [ - 2, 2]. Note that f
is neither 3-convex nor 3-concave since, although f(3) =°except at 1 and
-1, it is not differentiable at these points. The function

g(X) = -(8x2+8x+ 1)/16,

=(4x 3
- 3x)/16,

= (8x2
- 8x + 1)/16,

XE [-2, -!)
XE [-~, D
xE(!,2]

is 3-convex since g"(x) is nondecreasing, and one easily checks that
{- 2, - ~, -1, -!, !, 1, ~, 2} is an alternant of length 8 for f - g, with
Ilf - gil = 1/16. In particular, f - g has a negative altemant of length 4 on
n, 2], where g E Ilz ; hence by (13) g is a best 3-convex approximation to f

3

In this section we briefly discuss polynomials and n-convex
approximation to n-convex and n-concave functions.

The following lemma is compiled from results in [13].

(23) LEMMA. If f E C[a, b] is n-convex and Pn -I is its best
approximation from Iln- l then

(a) the maximal length of an alternant for f - P" -I is n + 1,

(b) a, bEcrit(f - Pn-l) andf(b)- Pn_l(b)?;O,

(c) if n ?; 2 then a and b are isolated points of crit(f - Pn_ 1), and

(d) if n?; 3 then crit(f - Pn- d consists of precisely n + 1 points
forming a positively oriented alternant, including the endpoints.
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(24) LEMMA. If IEC[a,b]\IIn~1 is n-convex then its best
approximation Irom lln is strictly n-convex (i.e., an> 0).

Proof If Pn is the best approximation for I from lln then I - Pn has an
alternant of length at least n + 2; hence there are points a ~ to < ... <
tn~b such that (f-Pn)(t;)=O (i=O, ...,n). Thus [to, ...,tn](f-Pn)=O,
and hence 0 ~ [to, ..., tnJI = [to, ..., tnJ Pn = an" If we suppose that an = 0
then Pn E lln_1 so that I - Pn is n-convex. Butl - Pn has at least n + 1 sign
changes, a contradiction; hence an > o. I

(25) THEOREM [16]. IfI is n-concave then it has a bna in IIn_ I.

Proof If I is n-concave then by (24) its best approximation from lln
is also n-concave; hence by (13) I has a best n-convex approximation
in lln_l· I

(26) LEMMA (cf. [2J). If I is nonincreasing on [a, bJ then Po(x) =
!(f(a) + I(b)) is its unique best nondecreasing approximation.

Proof The endpoints form an alternant of length 2 for I - Po, with
III- Poll = !(f(a) - I(b )). If g is a nondecreasing function with III - gil ~
III-Poll then necessarily g(a)~po(a)=po(b)~g(b); hence g is constant
and agrees with Po on [a, b]. I

(27) THEOREM. If I is n-concave then Pn -I is its unique best n-convex
approximation.

Proof If I E IIn_ I there is nothing to show. Otherwise by (24) an < 0;
hence (13) implies that Pn-I is a bna. If g is another bna then from (20)
g =. Pn _ I on an interval containing n + 1 alternation points of I - Pn_ I. If
n ~ 2 then (23) implies that this interval is all of [a, bJ, and we have
uniqueness. For n = 1 uniqueness was proved in (26). I

We record that (27) follows from [6, Theorem 2.2J, under slightly more
restrictive conditions.

4

This section is devoted to a class of theorems that yield information on
the "distance" from IIn _ I to a given continuous function, defined as

En(f) :=min{111 - pll: PElln-d·

Theorems of this type for n-convex functions were first proved by S. N.
Bernstein, who always assumed that such functions were n-times differen-
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tiable. This is also the case in [8], where a variety of similar results are
presented. No such assumption is made here.

(28) THEOREM (cf. [8]). If f + g and f - g are n-convex then
En(g) ~ EnU)·

Proof Let Ilg - qll = En(g) and Ilf - pll = EnU) for p, q E Iln- 1, and let
a~xo< ... <xn~b be an alternant for g-q. Set h_ =(g-q)­
U - p) = p - q - U - g) and h + = (q - g) - Up) = p + q - U + g). By
assumption h _ and h + are both n-concave.

If we suppose that Ilf-pll<llg-qll=llq-gll, then sgnh_(x i )=
sgn(q- g)(xJ (i=0, ... , n); hence either h+ or h_ has a positively oriented
oscillation of length n + 1, a contradiction as both are n-concave. I

(29) EXAMPLE. If f(n)(x);;:'n! on [-1,1] then I(x)±xn is n-convex;
hence by (28) EnU) ~ En(xn) = II Tn II = 1/2n- 1, where Tn is the monic
Chebyshev polynomial of degree n on [ -1, 1].

(30) LEMMA [9]. If 11'/2 E C[a, b] have similarly oriented alternants
01 length k and Ii fill = II nl, then fl - f2 has at least k zeros, counting
multiplicity up to two.

(31) THEOREM. Ifg andf-g are n-convex then En(g)~EnU), with
equality iff f - g E Iln_I'

Proof As f - g and f + g = f - g + 2g are n-convex, the inequality
follows from (28). Now suppose that Ilf-pll=En(g)=llg-qll for
p, q E Iln_ l' Since g and f = f - g + g are n-convex, by (13) f - p and g - q
have positively oriented alternants of length n + 1; hence by (30) their dif­
ference has at least n + 1 zeros. But U - g) - (p - q) = U ~ p) - (g- q) is
n-convex; hence from (2) it must vanish on a subinterval of [a, b] and be
nonzero elsewhere. However, (23) implies that f - p and g - q agree at the
endpoints, from which it follows that f - g = p - q E Iln _ 1 on all of [a, b].
Conversely, iff - g E Iln_1 then f = g + qn-I for some qn-I E Iln_ 1; hence
EnU) = E n( g). I

(32) EXAMPLE. Applying (31) to the previous example we see that if
pn);;:, n! then EnU) ~ 1/2n- 1, with strict inequality unless fen) = n!, i.e.,
unless f is a monic polynomial of degree n.
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Note Added in Proof After this work was completed, the author discovered that, in the
paper of H. G. Burchard, Extremal Positive Splines with Applications to Interpolation and
Approximation by Generalized Convex Functions, Bull. Amer. Math. Soc. 79 (1973), 959-964,
a characterization theorem for best generalized convex approximation is announced, from
which some of the results of this paper follow.
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